ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Счётчики электрической энергии статические трёхфазные «Меркурий 236»

Назначение средства измерений

Счётчики предназначены для измерения и учёта активной энергии прямого направления или активной энергии прямого направления и реактивной энергии прямого и обратного направлении переменного тока частотой 50 Гц в трёх и четырёхпроводных сетях.

Описание средства измерений

Счетчики являются измерительными приборами, построенными по принципу цифровой обработки входных аналоговых сигналов. Управление процессом измерения и всеми функциональными узлами счетчика осуществляется высокопроизводительным микроконтроллером (МК), который реализует алгоритмы в соответствии со специализированной программой, помещенной в его внутреннюю память программ. Управление узлами производится через аппаратно-программные интерфейсы, реализованные на портах ввода/вывода МК.

МК по выборкам мгновенных значений напряжения и тока, поступающих с датчиков напряжения и датчиков тока, производит вычисление усредненных значений активной и реактивной мощности, среднеквадратических значений напряжения и тока. МК выполняет функции вычисления измеренной энергии, связи с энергонезависимой памятью, отображение информации на ЖКИ и формирование импульсов телеметрии.

Измерение частоты сети производится посредством измерения периода фазного напряжения.

Счётчики имеют единое конструктивное исполнение и отличаются типом устройства для отображения информации и дополнительными функциями.

В счётчиках в качестве счётного механизма используются устройство отсчётное (УО) или жидкокристаллический индикатор (ЖКИ).

Счётчики с электромеханическим устройством отсчётным (УО) являются однотарифными и предназначены для учёта только активной энергии.

Условное обозначение счётчика с УО:

«Меркурий 236AM-0X», где

- Меркурий торговая марка счётчика;
- 236 серия счётчика;
- А тип измеряемой энергии активной энергии;
- М электромеханическое отсчётное устройство;
- -0X модификации, подразделяемые по максимальному току и классу точности, приведены в таблице 1.

Таблица 1 - Модификации счётчиков «Меркурий 236AM-0X»

Модификации	Класс точности при измерении	Номинальный/базовый
счётчиков	активной энергии	(максимальный) ток, А
01	1,0	5(60)
02	1,0	10(100)
03	0,5S	5(10)

На рисунке 1 приведена фотография общего вида счётчиков «Меркурий 236AM-0X»

Рисунок 1 – Внешний вид счётчиков «Меркурий 236AM-0X»

Счётчики с жидкокристаллическим индикатором (ЖКИ) являются многотарифными и выпускаются с внешним или внутренним тарификатором и предназначены для учёта активной энергии прямого направления или активной энергии прямого направления и реактивной энергии прямого и обратного направлении (таблица 2)

Таблина 2 -

тиолпци 2				
Наименование	Активно-реа	активный	Активный	
канала учёта	1 направление		1 направлен	ие
	С учётом знака	По модулю	С учётом знака	По модулю
A+	A1+A4	A1+A2+A3+A4	A1+A4	A1+A2+A3+A4
A-	-	-	-	-
R+	R1	R1+R3	-	-
R-	R4	R2+R4	-	-

Примечание

A+, R+ - активная и реактивная энергия прямого направления.

A-, R- - активная и реактивная энергия обратного направления,

A1, A2, A3, A4, R1, R2, R3, R4 – активная и реактивная составляющие вектора полной энергии первого, второго, третьего и четвертого квадрантов соответственно.

Примечание - Прямое направление передачи активной энергии соответствует углам сдвига фаз между током и напряжением от 0 $^\circ$ до 90 $^\circ$ и от 270 $^\circ$ до 360 $^\circ$, реактивной энергии - от 0 $^\circ$ до 90 $^\circ$ и от 90 $^\circ$ до 180 $^\circ$.

Обратное направление передачи активной энергии соответствует углам сдвига фаз между током и напряжением от 90° до 180° и от 180° до 270° , реактивной энергии - от 180° до 270° и от 270° до 360° .

Условное обозначение счётчиков с ЖКИ:

«Меркурий 236ART-0X PQLR(C)S»,

где Меркурий – торговая марка счётчика;

- 236 серия счётчика;
- AR тип измеряемой энергии:
 - ▶ А активной энергии;

- ▶ R реактивной энергии;
- Т наличие внутреннего тарификатора;
- -0X модификации, подразделяемые по максимальному току и классу точности, приведены в таблице 3.
 - P наличие профиля;
 - Q показатель качества электроэнергии, наличие журналов вкл./выкл. токов;
 - − L модем PLC-I;
 - R интерфейс RS-485;
 - С интерфейс CAN;
 - S внутреннее питание интерфейса.

Примечание - Отсутствие буквы в условном обозначении означает отсутствие соответствующей функции. Оптопорт присутствует во всех модификациях счётчика.

Таблица 3 - Модификации счётчиков «Меркурий 236A(R)(T)...»

Модификации	Класс точности при измерении энергии		Номинальный/базовый (мак-
счётчиков	активной	реактивной	симальный) ток, А
01	1,0	2,0	5(60)
02	1,0	2,0	5(100)
03	0,5S	1,0	5(10)

На рисунке 2 приведена фотография общего вида счётчиков «Меркурий 236A(R)(T)...».

Рисунок 2 – Внешний вид счётчиков «Меркурий 236A(R)(T)...»

Переключение тарифов осуществляется с помощью внутреннего тарификатора или по команде через интерфейс или модем PLC-I от внешнего тарификатора.

Счётчики имеют встроенный последовательный интерфейс связи, обеспечивающий обмен информацией с компьютером в соответствии с протоколом обмена. Кроме данных об учтённой электроэнергии в энергонезависимой памяти хранятся калибровочные коэффициенты,

тарифное расписание, серийный номер, версия программного обеспечения счётчика и другая информация, необходимая для конфигурации счетчика.

Счётчики с индексом «L» в названии счётчика дополнительно имеют встроенный модем PLC-I для связи по силовой низковольтной сети.

Счётчики имеют импульсный выход для поверки счётчиков и для использования в ранее разработанных и эксплуатируемых автоматизированных системах технического и коммерческого учёта потребляемой электроэнергии.

Счётчики «Меркурий 236AM-0X» обеспечивают регистрацию значений потребляемой электроэнергии с нарастающим итогом с момента ввода счётчика в эксплуатацию.

Счётчики «Меркурий 236A(R)(T)...» обеспечивают вывод на индикатор следующих параметров и данных:

- учтённой активной энергии прямого направления (счётчики с индексом «А»), активной прямого направления и реактивной энергии прямого и обратного направления (счётчики с индексами «AR») в соответствии с заданным перечнем индицируемых тарифных зон (по сумме тарифов, тариф 1, тариф 2, тариф 3, тариф 4) раздельно:
 - всего от сброса показаний;

Примечание – счётчики, запрограммированные в однотарифный режим, обеспечивают вывод на индикатор значения потребляемой электроэнергии только по одному тарифу.

- вспомогательных параметров:
- мгновенных значений (со временем интегрирования 1 с) активной, реактивной и полной мощности по каждой фазе и по сумме фаз;
 - действующих значений фазных напряжений и токов по каждой из фаз;
 - углов между фазными напряжениями:
 - между 1 и 2 фазами;
 - между 1 и 3 фазами;
 - между 2 и 3 фазами.
- коэффициентов мощности ($\cos \phi$) по каждой фазе и по сумме фаз с указанием вектора полной мощности;
 - частоты сети;
 - коэффициента искажений синусоидальности фазных напряжений;
 - **текущего времени;
 - **текущей даты;
 - параметров модема (для варианта исполнения с модемом PLC-I);
 - *идентификационного номера модема;
 - *уровня принятого сигнала.
 - температуры внутри корпуса счётчика;
 - ***тамперных событий:
 - даты и времени вскрытия верхней крышки счётчика;
 - даты и времени вскрытия защитной (клеммной) крышки счётчика;
 - даты последнего перепрограммирования прибора;
- даты и времени возникновения последней нештатной ситуации (ошибки самодиагностики).

Примечания

- 1 * для счётчиков с модемом PLC-I.
- 2 ** для счётчиков с внутренним тарификатором.
- 3 *** при возникновении тамперных событий на ЖКИ в любом режиме высвечивается пиктограмма (точка в круге или восклицательный знак в треугольнике) до считывания соответствующих журналов событий.

Объем основных и вспомогательных параметров, выводимых на ЖКИ, а также длительность индикации, программируется через интерфейс или через модем PLC-I.

Конструктивно счётчики состоят из следующих узлов:

корпуса (основания корпуса, крышки корпуса, клеммной крышки, крышки интерфейсной);

- клеммной колодки;
- печатного узла.

Печатный узел представляет собой плату с электронными компонентами, которая устанавливается в основании корпуса. Печатная плата подключается к клеммной колодке с помощью проводов.

Крышка корпуса крепится к основанию двумя винтами и имеет окно для считывания показаний с ЖКИ или УО и для наблюдения за светодиодным индикатором функционирования.

Клеммная колодка состоит из восьми клемм для подключения электросети и нагрузки.

На печатном узле находятся:

- блок питания;
- оптрон импульсного выхода;
- микроконтроллер (МК);
- энергонезависимое запоминающее устройство;
- оптопорт с функцией электронной кнопки;
- ЖКИ или УО.

Пломбирование счетчиков организацией, осуществляющей поверку, производится с нанесением знака поверки давлением на пломбу. Схема пломбирования счётчиков приведена на рисунке 3.

Схема пломбирования счётчиков приведена на рисунке 3.

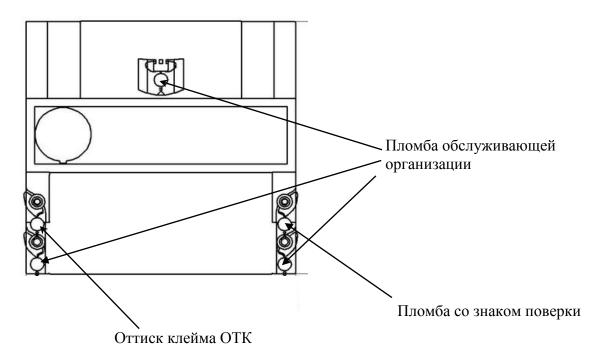


Рисунок 3 - Схема пломбирования счётчиков

Счётчики могут применяться автономно или в автоматизированной системе сбора данных о потребляемой электроэнергии.

Счётчики предназначены для эксплуатации внутри закрытых помещений.

Программное обеспечение

В счётчиках используется программное обеспечение «Меркурий 236».

Структура программного обеспечения «Меркурий 236» приведена на рисунке 4.

Программное обеспечение состоит из следующих модулей:

- модуль измерений, вычислений и подсчета активной и реактивной энергии;
- модуль индикации;
- модуль обмена с внешней памятью;
- тарификатора и таймера (часов);
- модуль обслуживания интерфейсов (UART, оптопорт, модем PLC-I).

Модуль подсчета энергии осуществляет измерение токов, напряжений и мощностей, которые в последующем используются для вычисления энергии и других вспомогательных параметров.

Модуль индикации обеспечивает вывод на ЖКИ необходимую информацию в соответствии с заданным алгоритмом.

Модуль работы с внешней памятью обеспечивает чтение и запись данных во внешнюю энергонезависимою память. В качестве данных могут быть как измеренные метрологические параметры с учетом заданного тарифного расписания, так и другие параметры, которые позволяют функционировать счетчику в соответствии с его алгоритмом.

Модуль часов предназначен для ведения календаря реального времени.

Тарификатор, по заданному тарифному расписанию, осуществляет управление процессом записи измеренной энергии в соответствующие регистры внешней памяти.

Модуль обслуживания интерфейсов обеспечивает связь счетчика с внешними устройствами.

Большинство модулей взаимосвязаны.

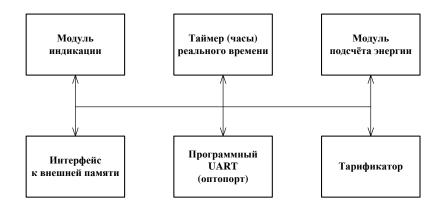


Рисунок 4 - Структура программного обеспечения «Меркурий 236»

Идентификационные данные программного обеспечения приведены в таблице 4.

Таблица 4 - Идентификационные данные программного обеспечения

The Table 1 and 1	
Идентификационные данные (признаки)	Значение
Идентификационное наименование программного обеспечения	M236_800. txt
Номер версии (идентификационный номер) программного обеспечения	не ниже 8.0.0
Цифровой идентификатор программного обеспечения	5E41
Алгоритм вычисления цифрового идентификатора ПО	CRC 16

Доступ к параметрам и данным со стороны интерфейсов связи защищен паролями на чтение и программирование. Метрологические коэффициенты и заводские параметры защищены аппаратной перемычкой и недоступны без вскрытия пломб.

Для работы со счётчиками используется тестовое программное обеспечение «Конфигуратор счётчиков Меркурий».

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений в соответствии с Р 50.2.077-2014 - высокий.

Конструкция счетчиков исключает возможность несанкционированного влияния на ПО счетчиков и измерительную информацию.

Метрологические и технические характеристики

1 Основные метрологические и технические характеристики счётчиков приведены в таблице 5.

Таблица 5 - Основные метрологические и технические характеристики счётчиков

		Всего листов т
Наименование параметра	Допускаемое	Примечание
	значение	
Класс точности по ГОСТ 31819.21	1	
ГОСТ 31819.22	0,5S	
ГОСТ 31818.23	1 или 2	
Номинальное напряжение (U _{ном})	230 B	
Установленный рабочий диапазон	от 0,9 до 1,1U _{ном}	
напряжения		
Расширенный рабочий диапазон	от 0,8 до 1,15U _{ном}	
напряжения		
Предельный рабочий диапазон напряжения	от 0 до 1,15U _{ном}	
Номинальный ($I_{\text{ном}}$) и базовый ток ($I_{\text{б}}$)	5 или 10 А	согласно таблицам 1 и 3
Максимальный ток (Імакс), А	10 или 60 или 100 А	согласно таблицам 1 и 3
Номинальное значение частоты	50 Гц	
Полная мощность, потребляемая цепью	0,1 B·A	
тока, не более		
Полная мощность, потребляемая цепью		
напряжения, не более:	9 B·A	
 для счётчиков с модемом PLC-I 	24 B·A	
Активная мощность, потребляемая цепью		
напряжения, не более	1 B _T	
 для счётчиков с модемом PLC-I 	1,5 Вт	
Максимальное число действующих тарифов	до 4-х	Для счётчиков с ЖКИ
Точность хода часов счётчиков при	±0,5 c/cyT	
нормальной температуре (20±5) °C	•	
Диапазон рабочих температур,	от минус 45 до	при температуре от ми-
	плюс 75 °C	нус 20 до плюс 45 °C
		допускается частичная
		потеря работоспособно-
		сти ЖКИ
Средняя наработка на отказ	220000 ч	
Средний срок службы	30 лет	
Масса, не более	0,90 кг	
Габаритные размеры, не более	(158×154×72) MM	

2 Стартовый ток (чувствительность) соответствуют приведённым в таблицах 6 и 7.

Таблица 6 – Стартовые токи для счётчиков «Меркурий 236A(R)(T)...»

	1 11
Модификации счётчика	Стартовый ток, А
01	0,020
02	0,020
03	0,005

Таблица 7 – Стартовые токи для счётчиков «Меркурий 236AM-0X»

Модификации счётчика	Стартовый ток, А
01	0,020
02	0,040
03	0,005

3 Постоянная счётчиков соответствует указанным в таблицах 8 и 9.

Таблица 8 - Постоянная счётчиков «Меркурий 236A(R)(T)...»

Модификации	Постоянная счётчика, имп./(кВт-ч), имп./(квар-ч)		
счётчиков	в режиме телеметрии	в режиме поверки	
01	500	32000	
02	250	16000	
03	1000	160000	

Таблица 9 - Постоянная счётчиков «Меркурий 236AM-0X»

Модификации	Постоянная счётчика, имп./(кВт·ч)		
счётчиков	в режиме телеметрии	в режиме поверки	
01	1600	-	
02	1600	-	
03	800	17070	

- 4 Пределы допускаемой относительной погрешности счётчиков при измерении фазных напряжений в рабочем диапазоне температур и в расширенном диапазоне измеряемых напряжений ± 0.5 %.
- 5 Пределы допускаемой относительной погрешности счётчиков при измерении частоты питающей сети в диапазоне от 49 до 51 Гц и в рабочем диапазоне температур ±0,04 %.
- 6 Пределы допускаемой относительной погрешности счётчиков класса точности 0,5S при измерении фазных токов в диапазоне токов от $0,02I_{\text{ном}}$ до Imax в нормальных условиях:

$$\delta i = \pm \left[0.5 + 0.005 \left(\frac{\operatorname{Im} ax}{Ix} - 1 \right) \right], \%$$

где Ітах - максимальный ток счётчика,

Іх - измеряемое значение тока.

6.1 Пределы допускаемой относительной погрешности счётчиков класса точности 1 при измерении фазных токов в нормальных условиях в диапазоне токов от $0.05I_6$ до I_6 :

$$\delta i = \pm \left[1 + 0.01 \left(\frac{I\delta}{Ix} - 1 \right) \right], \%$$

где Іб - базовый ток счётчика,

Іх - измеряемое значение тока.

6.2 Пределы допускаемой относительной погрешности счётчиков класса точности 1 при измерении фазных токов в нормальных условиях в диапазоне токов от I_6 до I_{max} :

$$\delta i = \pm \left[0.6 + 0.01 \left(\frac{\operatorname{Im} ax}{Ix} - 1 \right) \right], \%$$

7 Отображение измеряемых величин

Информация отображается на счётном механизме

Счётный механизм счётчиков даёт показания непосредственно в киловатт-часах (кBт·ч) при измерении активной энергии и в киловар-часах (квар·ч) при измерении реактивной энергии. В качестве счётного механизма используются устройство отсчётное (УО) или жидкокристаллический индикатор (ЖКИ).

- 7.1 Для УО общее количество барабанов семь:
- для счётчиков «Меркурий 236 AM-01» и «Меркурий 236 AM-03» первые шесть барабанов индицируют целое значение электроэнергии в кBт·ч, а седьмой в десятых и сотых долях кBт·ч:
- для счётчиков «Меркурий 236 AM-02» все семь барабанов индицируют целое значение электроэнергии в кBт·ч.
- 7.2 ЖКИ счётчика представляет собой восьмиразрядный семисегментный цифровой индикатор с фиксированной запятой перед двумя младшими разрядами.

Класс защиты счётчиков от проникновения пыли и воды IP51 по ГОСТ 14254-96.

Корпус счётчиков изготовляется методом литья из ударопрочной пластмассы, изолятор контактов изготовляется из пластмассы с огнезащитными добавками.

Знак утверждения типа

наносится на панель счётчика методом офсетной печати или фото способом.

В эксплуатационной документации на титульных листах знак утверждения типа наносится типографским способом.

Комплектность средства измерений

Комплект поставки счетчиков приведён в таблице 10.

Таблица 10 - Комплект поставки счетчиков

таолица то - комплек	1 поставки счетчиков	
Обозначение докумен-	Наименование и условное обозначение	Кол.
та		
Счётчик электрическо	ой энергии статический трёхфазный «Меркурий 236AM-0X»	
(или «Мери	курий 236A(R)(T)-0X») в потребительской таре	1
АВЛГ.411152.034 ПС	Паспорт (для счётчиков «Меркурий 236AM-0X»)	1
АВЛГ.411152.034 ФО	Формуляр (для счётчиков «Меркурий 236A(R)(T)»)	1
АВЛГ.411152.034 РЭ	Руководство по эксплуатации	1
	(для счётчиков «Меркурий 236A(R)(T)»)	
АВЛГ.411152.034 РЭ1*	Методика поверки (для счётчиков «Меркурий 236A(R)(T)»)	1
	Программное обеспечение «Конфигуратор счётчиков	1
	Меркурий» на магнитном носителе или CD-диске	
	(для счётчиков «Меркурий 236A(R)(T)»)*	
	Программное обеспечение «BMonitorFEC» на магнитном	1
	носителе или CD-диске*	
АВЛГ.621.00.00*	Преобразователь интерфейсов «Меркурий 221» для	1
	программирования счетчиков и считывания информации по	
	интерфейсу RS-485	
АВЛГ.786.00.00	Оптический считыватель*	1
АВЛГ.468152.018*	Технологическое приспособление	1
	(преобразователь RS-232 - PLC)	
АВЛГ.411152.034 РС**	Руководство по среднему ремонту	1
* Поставляется по отде.	льному заказу организациям, производящим поверку и	_
эксплуатацию счётчи	MKOB.	
** Поставляется по отд	ельному заказу организациям, проводящим послегарантийный	

^{**} Поставляется по отдельному заказу организациям, проводящим послегарантийный ремонт.

Поверка

осуществляется по ГОСТ 8.584-2004 «Счетчики статические активной электрической энергии переменного тока. Методика поверки» (для счетчиков «Меркурий 236АМ-0Х») и по документу АВЛГ.411152.034 РЭ1 «Счётчики электрической энергии статические трехфазные «Меркурий 236». Руководство по эксплуатации. Приложение Г. Методика поверки» с изменением №1 (для счетчиков «Меркурий 236А(R)(T)…»), утвержденному ФБУ «Нижегородский ЦСМ» 15 августа 2016 г.

Пломбирование счетчиков организацией, осуществляющей поверку, производится с нанесением знака поверки давлением на пломбу.

Перечень эталонов, применяемых для поверки:

- установка для поверки счётчиков электрической энергии автоматизированная УАПС-1М: номинальный ток (0,01-100) А; номинальное напряжение 230 В; погрешность измерения: активной энергии $\pm 0,15$ %, реактивной энергии $\pm 0,3$ % (регистрационный № 23832-07);
- частотомер электронно-счетный Ч3-63: погрешность измерения частоты $2 \cdot 10^{-7}$ (регистрационный № 9084-83).

Сведения о методиках (методах) измерений

АВЛГ.411152.034 РЭ «Счётчики электрической энергии статические трёхфазные «Меркурий 236». Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к счётчикам электрической энергии статическим трёхфазным «Меркурий 236».

- 1. ГОСТ 31818.11-2012 Аппаратура для измерения электрической энергии переменного тока. Общие требования. Испытания и условия испытаний. Часть 11. Счётчики электрической энергии.
- 2. ГОСТ 31819.21-2012 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 21. Статические счётчики активной энергии классов точности 1 и 2.
- 3. ГОСТ 31819.22-2012 «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счётчики активной энергии классов точности 0.2S и 0.5S
- 4. ГОСТ 31819.23-2005 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счётчики реактивной энергии.
- 5. ГОСТ 8.551-2013 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений электрической мощности и электрической энергии в диапазоне частот от 1 до 2500 Гц.
- 6. АВЛГ.411152.034 ТУ Счётчики электрической энергии статические трёхфазные «Меркурий 236». Технические условия.

Изготовитель

Общество с ограниченной ответственностью «Научно-Производственная Компания «Инкотекс» (ООО «НПК «Инкотекс»). ИНН 7702690982

Юридический адрес: 105484, Россия, г. Москва, ул. 16-я Парковая, д.26, к. 2 Фактический адрес: 105484, Россия, г. Москва, ул. 16-я Парковая, д.26, к. 2

Телефон/факс (495) 780-77-38, e-mail: firma@incotex.ru

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Нижегородской области» (ФБУ «Нижегородский ЦСМ») Аттестат аккредитации в области обеспечения единства измерений № 30011-13 по проведению испытаний средств измерений в целях утверждения типа действителен до 27.11.2018. 603950, Россия, г. Нижний Новгород, ул. Республиканская, д. 1. тел. (831) 428-78-78, факс (831) 428-57-48, e-mail: mail@nncsm.ru.

Заместитель

Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

2016 г.