ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Теплосчетчики-регистраторы МАГИКА-2

Назначение средства измерений

Теплосчетчики-регистраторы МАГИКА-2 (далее — теплосчетчики) предназначены для измерений и регистрации количества теплоты, объемного и массового расходов жидкости, объема и массы жидкости в потоке, температуры и избыточного давления жидкости (теплоносителя) в системах теплоснабжения и водоснабжения.

Описание средства измерений

Принцип действия теплосчетчиков основан на вычислении количества теплоты, объемного и массового расходов жидкости, объема и массы жидкости в потоке, температуры и избыточного давления жидкости (теплоносителя) с помощью данных, полученных от средств измерении, входящих в состав теплосчетчика.

Теплосчетчики являются составными изделиями и состоят из средств измерений объемного расходов жидкости и объема жидкости в потоке, температуры, избыточного давления, вычислителя и регистратора расхода (опционально).

Вычислитель представляет собой микропроцессорный блок, который управляет процессом сбора измерительной информации от средств измерении параметров жидкости (теплоносителя), выполняет расчеты, обеспечивает взаимодействие с периферийными устройствами, хранит в энергонезависимой памяти необходимые для работы параметры, результаты измерений и выводит их на устройства индикации или через интерфейсы связи. Вычислитель рассчитывает массовый расход жидкости, массу жидкости в потоке и количество теплоты.

Регистратор расхода предназначен для преобразования сигнала с первичного преобразователя расхода в значения объемного расхода и объема жидкости в потоке, и передачи полученных значений в вычислитель. Регистратор расхода может быть встроен в вычислитель или иметь раздельно-выносное исполнение.

В качестве средств измерений давления в составе теплосчетчика могут применяться преобразователи давления измерительные СДВ (регистрационный номер 28313-11), датчики избыточного давления с электрическим выходным сигналом ДДМ-03Т-ДИ (регистрационный номер 55928-13). Общий вид средств измерений давления в составе теплосчетчика представлены на рисунке 1.

датчик избыточного давления с электрическим выходным сигналом ДДМ-03Т-ДИ

преобразователь давления измерительный СДВ

Рисунок 1 – Общий вид средств измерений давления измеряемой среды

В качестве средств измерений объемного расхода жидкости и объема жидкости в потоке в составе теплосчетчика могут применяться: первичные преобразователи расхода в комплекте с регистратором расхода (производства ООО «ВТК Прибор» г. Киров) и/или расходомеры-счетчики электромагнитные РСЦ (регистрационный номер 71286-18). Общий вид средств измерений объемного расхода жидкости и объема жидкости в потоке в составе теплосчетчика представлены на рисунке 2.

расходомеры-счетчики электромагнитные РСЦ

регистратор расхода раздельно-выносного исполнения ООО «ВТК Прибор»

Рисунок 2 – Общий вид средств измерений объемного расхода жидкости и объема жидкости в потоке

В качестве средств измерений температуры измеряемой среды в составе теплосчетчика могут применяться термопреобразователи сопротивления платиновые ТСП и ТСП-К (регистрационный номер 65539-16), комплекты термометров сопротивления из платины технические разностные КТПТР-04, КТПТР-05, КТПТР-05/1 (регистрационный номер 39145-08), комплекты термометров сопротивления из платины технические разностные КТПТР-01, КТПТР-03, КТПТР-07, КТПТР-08 (регистрационный 46156-10), КТПТР-06, номер комплекты термопреобразователей сопротивления платиновых КТС-Б (регистрационный номер 43096-15) с номинальной статической характеристикой (НСХ) ТСП 100П, Рt100 или Рt500. Общий вид средств измерений температуры измеряемой среды в составе теплосчетчика представлены на рисунке 3.

комплект термометров сопротивления из платины технические разностные КТПТР-04, КТПТР-05, КТПТР-05/1

комплект термопреобразователей сопротивления платиновых КТС-Б

сопротивления платиновые ТСП и ТСП-К

термопреобразователи комплект термометров сопротивления из платины технические разностные КТПТР-01, КТПТР-03, КТПТР-06, КТПТР-07, КТПТР-08

Рисунок 3 – Общий вид средств измерений температуры измеряемой среды

В зависимости от назначения теплосчетчика и исполнения вычислителя теплосчетчики выпускаются в разных модификациях и маркируются следующим образом:

1	2	3	4	5	6
Теплосчетчики-регистраторы МАГИКА-2	-X	-X	-X	-X	-X

- 1 наименование и тип;
- 2 исполнение вычислителя:
- К для измерений параметров теплоносителя и количества теплоты в одной системе теплоснабжения или водоснабжения, содержащих не более двух трубопроводов;
- А для измерений параметров теплоносителя и количества теплоты в одной системе теплоснабжения или водоснабжения, содержащих не более трех трубопроводов;
- Д для измерений параметров теплоносителя и количества теплоты в одной системе теплоснабжения или водоснабжения, содержащих не более трех трубопроводов с возможным реверсным потоком теплоносителя;
- Е для одновременных измерений параметров теплоносителя и количества теплоты в двух закрытых и/или открытых системах теплоснабжения, содержащих не более двух трубопроводов в каждой системе;
- Т в качестве составного теплосчетчика для одновременных измерений параметров теплоносителя и количества теплоты в двух или трех закрытых и/или открытых системах теплоснабжения, содержащих не более трех трубопроводов в каждой системе;
- 3 число каналов для подключения первичных преобразователей расхода ООО «ВТК Прибор» (г. Киров);
 - 4 число каналов для подключения средств измерений температуры;
 - 5 число каналов для подключения средств измерений давления;
- 6 число каналов (импульсных) для подключения средств измерений объемного расхода жидкости и объема жидкости в потоке.

Общий вид теплосчетчиков приведен на рисунке 4.

Рисунок 4 — Общий вид теплосчетчиков

Пломбировка от несанкционированного доступа к настройкам теплосчетчика осуществляется с помощью наклейки, которая наклеивается на перемычку, расположенную на плате вычислителя, и на корпус регистратора расхода раздельно-выносного исполнения (при его наличии), с нанесением знака поверки на наклейку. Средства измерений, входящие в состав теплосчетчика, пломбируются в соответствии с описанием типа на конкретное средство измерений. Места пломбирования в целях предотвращения несанкционированного доступа к настройкам вычислителя, в зависимости от его исполнения, представлены на рисунках 5 и 6, регистратора расхода раздельно-выносного исполнения на рисунке 7.

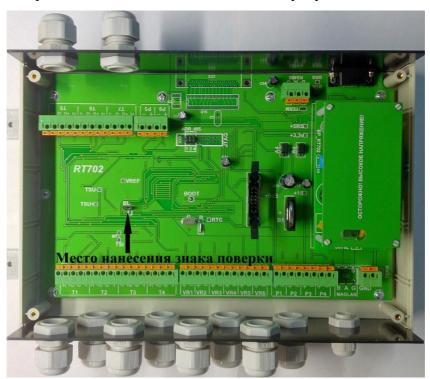


Рисунок 5 — Схема пломбировки от несанкционированного доступа, обозначение места нанесения знака поверки на перемычку, расположенную на плате вычислителя без встроенного регистратора расхода

Рисунок 6 — Схема пломбировки от несанкционированного доступа, обозначение места нанесения знака поверки на перемычку, расположенную на плате вычислителя с встроенным регистратором расхода

Рисунок 7 — Схема пломбировки от несанкционированного доступа, обозначение места нанесения знака поверки на корпус регистратора расхода раздельно-выносного исполнения

Программное обеспечение

теплосчетчиков встроенное.

Функции программного обеспечения: осуществление сбора и обработки поступающих данных от средств измерении параметров жидкости (теплоносителя), выполнения математической обработки результатов измерений, обеспечения взаимодействия с периферийными устройствами, вычисления, хранения результатов вычислений, измеряемых параметров, настроек, уставок и архивирование данных.

Программного обеспечения разделено на метрологически значимую и метрологически не значимую части.

Уровень защиты программного обеспечения «высокий» в соответствии с $P\ 50.2.077\ -2014.$

Идентификационные данные программного обеспечения теплосчетчика в зависимости от исполнения вычислителя приведены в таблице 1.

Таблица 1 – Идентификационные данные программного обеспечения теплосчетчика в зависимости от исполнения вычислителя

Идентификационные данные (признаки)	Значение			
Исполнения вычислителя	А, Д	Е	К	T
Идентификационное наименование ПО	TCH.15			
Номер версии (идентификационный номер) ПО	1115	1215	1515	1415
Цифровой идентификатор ПО	1B92	3D71	5A29	FEE1
Алгоритм вычисления контрольной суммы исполняемого кода	CRC-16			

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики теплосчетчика

таолица 2 – метрологические характеристики теплосчетчика			
Наименование характеристики	Значение		
1	2		
Диапазон измерений объемного (массового) расхода жидкости			
$($ теплоносителя $)$, $м^3/ч (т/ч)^{(1)}$	от 0,06 до 3000		
Номинальный диаметр (1)	от DN15 до DN400		
Пределы допускаемой относительной погрешности теплосчетчика			
при измерении объемного (массового) расхода жидкости, объема			
(массы) жидкости в потоке, %:	± 2		
Диапазон измерений температуры жидкости (теплоносителя), °С (1)	от 0 до 160		
Пределы допускаемой абсолютной погрешности теплосчетчика при			
измерении температуры жидкости (теплоносителя), °С	$\pm (0,3+0,004\cdot t)$		
Диапазон измерений разности температур жидкости			
(теплоносителя), °С (1)	от 3 до 157		
Пределы допускаемой относительной погрешности теплосчетчика			
при измерении разности температур жидкости (теплоносителя), %	$\pm (0.5+3\cdot(\Delta t_{\min}/\Delta t))$		
Диапазон измерения избыточного давления жидкости			
(теплоносителя), МПа ⁽¹⁾	от 0 до 1,6		
Пределы допускаемой приведенной погрешности теплосчетчика			
при измерении давления жидкости (теплоносителя) (1) (2), %	$\pm 0,6;\pm 1,1;\pm 1,6$		
Пределы допускаемой относительной погрешности теплосчетчика			
при измерении времени, %	± 0.05		
Диапазон измерений количества теплоты, Гкал	от 0 до 99999999		
Пределы допускаемой относительной погрешности вычислителя			
теплосчетчика при вычислении количества теплоты, %	$\pm (0.5 + (\Delta t_{\min}/\Delta t))$		

1	2		
Пределы допускаемой относительной погрешности теплосчетчика			
при измерении количества теплоты, %			
 для закрытой системы теплоснабжения 	$\pm (3+4\cdot(\Delta t_{\min}/\Delta t))$		
 для открытой системы теплоснабжения 	в зависимости от		
	уравнения		
	измерений по		
	ГОСТ Р 8.728-2010		
– в зависимости от входящих в состав средств измерений;			
— за нормирующее значение принимается разность между максимальным и			
минимальным значениям диапазона измерений;			
Δt_{min} – наименьшая разность температуры, °С;			
Δt – измеренное значение разности температуры, °С;			
t – измеренное значение температуры, °С.			

Таблица 3 — Диапазоны расходов для первичных преобразователей расхода ООО «ВТК Прибор»

Номинальный диаметр	Наименьший расход, м ³ /ч	Наибольший расход, $M^3/4$
DN15	0,06	6
DN20	0,1	10
DN25	0,2	16
DN32	0,3	30
DN40	0,5	45
DN50	0,7	70
DN65	1,5	120
DN80	2,0	180
DN100	4,0	300
DN150	7,0	600
DN200	12,0	1000
DN300	23,0	2000
DN400	40,0	3000

Таблица 4 – Основные технические характеристики

Наименование параметра	Значение параметра
1	2
Измеряемая среда	Вода
Температура измеряемой среды, °С	от 0 до +160
Давление измеряемой среды, МПа, не более	1,6
Параметры электрического питания:	
 напряжение питания, В 	$220^{\pm 45}$
– частота, Гц	$50^{\pm 1}$
Условия эксплуатации:	
– температура окружающей среды, °С	от +5 до +50
– относительная влажность окружающей среды при 35 °C, %	до 95
– атмосферное давление, кПа	от 84 до 107
Число каналов вычислителя для подключения средств измерений	
давления измеряемой среды	от 1 до 6

1	2
Число каналов вычислителя для подключения средств измерений	
объемного расхода жидкости и объема жидкости в потоке	от 1 до 6
Число каналов вычислителя для подключения средств измерений	
температуры измеряемой среды	от 1 до 7
Степень защиты от воды и пыли вычислителя по	
ГОСТ 14254-2015, не ниже	IP40
Средний срок службы, лет	12
Средняя наработка на отказ, ч	80000

Знак утверждения типа

наносится на маркировочную табличку, закрепленную на передней панели вычислителя теплосчетчика в виде наклейки и на титульных листах по центру в верху руководства по эксплуатации и паспорта типографским способом.

Комплектность средства измерений

Таблица 5 – Комплектность средства измерений

Наименование	Обозначение	Количество, шт.
Теплосчетчик-регистратор МАГИКА-2	_	1 шт.
Руководство по эксплуатации	МАГИКА-2 000 001 РЭ	1 экз.
Методика поверки	МП 0837-1-2018	1 экз.
Паспорт	МАГИКА-2 000 001 ПС	1 экз.

Поверка

осуществляется по документу МП 0837-1-2018 «Инструкция. ГСИ. Теплосчетчики-регистраторы МАГИКА-2. Методика поверки», утвержденному ФГУП «ВНИИР» 22.10.2018.

Основные средства поверки:

- рабочий эталон 2-го разряда в соответствии с частью 1 Государственной поверочной схемы для средств измерений массы и объема жидкости в потоке, объема жидкости и вместимости при статических измерениях, массового и объемного расходов жидкости, утвержденной приказом Росстандарта от 07 февраля 2018 г. № 256 с необходимым диапазоном воспроизведения объемного расхода жидкости;
- рабочий эталон 3-го разряда в соответствии с Государственной поверочной схемы для средств измерений электрического сопротивления, утвержденной приказом Росстандарта от 15 февраля 2016 г. № 146, пределы допускаемой относительной погрешности ± 0,3 %;
- рабочий эталон 1-го разряда по ГОСТ 8.022-91 «ГСИ. Государственная поверочная схема для средств измерений силы постоянного электрического тока в диапазоне от $1 \cdot 10^{-16}$ до $30~\mathrm{A}$ »;
- рабочий эталон 4-го разряда в соответствии Государственной поверочной схемы для средств измерений времени и частоты, утвержденной приказом Росстандарта от 31 июля 2018 г. № 1621;
- рабочий эталон 3-го разряда по ГОСТ 8.558-2009 «ГСИ. Государственная поверочная схема для средств измерений температуры» с входящим в состав термостатом в диапазоне значений от 10 до 150 °C;
- генератор частоты в диапазоне значений от 0,001 до 10 к Γ ц, пределы допускаемой относительной погрешности \pm 0,01 %.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке и/или паспорт, а также наносится на наклейку, которая наклеивается на перемычку, расположенную на плате вычислителя, в соответствии с рисунком 5 или 6.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к теплосчетчикам-регистраторам МАГИКА-2

Методика осуществления коммерческого учета тепловой энергии, теплоносителя, утвержденная приказом Минстроя России от 17 марта 2014 г. № 99/пр (зарегистрирован Миностом России 12 сентября 2014 г., регистрационный № 34040)

ГОСТ Р 51649-2014 Теплосчетчики для водяных систем теплоснабжения. Общие технические условия

ГОСТ Р ЕН 1434-1-2011 Теплосчетчики. Часть 1. Общие требования

4218-201-49609178-2017 ТУ Теплосчетчики-регистраторы МАГИКА-2. Технические условия

ГОСТ Р 8.728-2010 ГСИ. Оценивание погрешностей измерений тепловой энергии и массы теплоносителя в водяных системах теплоснабжения

Изготовитель

Общество с ограниченной ответственностью «ВТК Прибор» (ООО «ВТК Прибор»)

ИНН 7728361397

Юридический адрес: 117593, г Москва, проезд Соловьиный, дом 2, этаж 1, пом. I, комн. 1, РМ 1С.

Адрес: 610046, г. Киров, 1-ый Кирпичный пер., д. 15

Телефон: (8332) 35-16-00 Web-сайт: <u>www.vtkgroup.ru</u> E-mail: <u>pribor@vtkgroup.ru</u>

Испытательные центры

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт расходометрии» (ФГУП «ВНИИР»)

Адрес: 420088, г. Казань, ул. 2-я Азинская, 7А Телефон: (843) 272-70-62, факс: (843) 272-00-32

Web-сайт: <u>www.vniir.org</u> E-mail: <u>office@vniir.org</u>

Аттестат аккредитации ФГУП «ВНИИР» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.310592 от 24.02.2015 г.

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Кемеровской области»

(ФБУ «Кемеровский ЦСМ»)

Адрес: 650991, Кемеровская область, г. Кемерово, ул. Дворцовая, д.2

Телефон: (3842) 36-43-89, факс: (3842) 75-88-66

Web-сайт: www. kmrcsm.ru E-mail: kemcsm@kmrcsm.ru

Аттестат аккредитации ФБУ «Кемеровский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312319 от 10.10.2017 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов